3.7.11-Triphenyl-tris-s-triazolo-[4.3-a: 4'.3'-c: 4''.3''-e]-s-triazin (XIX): Beim 3 stdg. Kochen unter Rückfluß von 10 mMol I und 3.4 mMol Cyanurchlorid in 20 ccm Toluol wurden 240 ccm Stickstoff entbunden. Beim Erkalten schieden sich 1.02 g blaßgelbes Kristallpulver mit Schmp. 270-295° aus der rotbraunen Lösung aus. Umlösen aus Toluol führte zu farbl. Prismen mit Schmp. 309-310°. Das IR-Spektrum weist bei 1580/cm eine breite Bande auf, die neben der aromat. Ringschwingung wohl den C=N-Schwingungen zuzuordnen ist.

C24H15N9 (429.5) Ber. C 67.14 H 3.54 N 29.32 Gef. C 67.45 H 3.75 N 28.99

HERMANN LUX und LUDWIG EBERLE 1)

Zur Kenntnis der Chrom(II)-Salze und des Chrom(II)-oxids, III²⁾

Aus dem Anorganisch-Chemischen Laboratorium der Technischen Hochschule München

(Eingegangen am 31. Januar 1961)

Herrn Prof. Dr. Dr. h. c. Egon Wiberg zum 60. Geburtstag gewidmet

Das mit röntgenamorphem Kohlenstoff vermischte kubische Chrom(II)-oxid zersetzt sich beim Erhitzen unter Bildung von Chrom(III)-oxid und Chromcarbiden. Neben Cr_2O_3 entsteht i. Hochvak. bei $650-800^\circ$ zunächst Cr_3C_2 , das bei $800-1000^\circ$ in ein orthorhombisches Chromcarbid von unbekannter Zusammensetzung übergeht. Unter allmählichem Verschwinden von Cr_2O_3 entsteht dann bei $1000-1100^\circ$ kubisches $Cr_{23}C_6$, aus dem schließlich reines Cr_3C_2 gebildet wird. – Im Wasserstoffstrom entsteht neben Cr_2O_3 bei 600° ebenfalls Cr_3C_2 , an dessen Stelle aber schon bei 650° ein bisher unbekanntes hexagonales Chromcarbid Cr_2C und das oben genannte orthorhombische Chromcarbid tritt, das bei etwa 850° wieder verschwindet, während Cr_2C bei etwa 950° zunächst in $Cr_{23}C_6$ und dann in α -Chrom übergeht. Cr_2C vermag bei 1100° auch unmittelbar α -Chrom zu bilden. Trigonales Cr_7C_3 trat in keinem Falle auf.

In der letzten Mitteilung dieser Reihe²⁾ war bereits angedeutet worden, daß die thermische Zersetzung des aus Chromhexacarbonyl hergestellten Chrom(II)-oxids nicht einfach unter Disproportionierung zu Chrom(III)-oxid und Metall führt; *infolge der Anwesenheit von Kohlenstoff* entstehen hierbei in verwickelter Reaktion Chromcarbide verschiedener Art, deren Bildung durch Aufnahme zahlreicher Pulverdiagramme verfolgt wurde.

¹⁾ L. EBERLE, Dissertat. Techn. Hochschule München 1961.

²⁾ II. Mitteil.: H. Lux und G. ILLMANN, Chem. Ber. 92, 2364 [1959].

VERHALTEN DES AUSGANGSPRÄPARATS BEIM ERHITZEN IM HOCHVAKUUM

Das Ausgangspräparat wurde in der bereits beschriebenen Weise²⁾ durch Schnellzersetzung von Chromhexacarbonyl in der Regel bei 300° hergestellt.

Abbild. 1 zeigt einige besonders charakteristische Pulverdiagramme, die nach dem Erhitzen des Ausgangspräparats *im Hochvakuum* erhalten wurden; sämtliche Aufnahmen erfolgten mit Chrom- K_{α} -Strahlung nach der asymmetrischen Methode bei 57.54 mm Kameraradius.

Abbild. 1a gibt zunächst das Diagramm des unveränderten CrO wieder, das man stets erhält, wenn eine Darstellungs- oder Erhitzungstemperatur von 550° nicht überschritten wird. Eine Veränderung des Diagramms war auch nach 5–10 Min. langem Erhitzen auf 600° und sogar 650° nicht zu bemerken. Obwohl das Präparat etwa 20 %C enthielt, traten Linien des Graphits, insbesondere die sehr intensive bei 40.4 mm weder hier noch bei höherem Erhitzen auch nur andeutungsweise auf.

Abbild. 1. Pulverdiagramme nach dem Erhitzen im Hochvakuum

Die ersten Spuren Cr_2O_3 erschienen nach 9stdg. Erhitzen auf 600°. Nach 8stdg. Erhitzen auf 650° (Abbild. 1 b) traten die stärksten Linien von Cr_2O_3 deutlicher hervor, außerdem zeigten sich drei ganz schwache Linien von Cr_3C_2 ; der größte Teil von CrO lag jedoch immer noch unverändert vor. Metallisches Chrom war nicht nachzuweisen; die stärkste Linie von α -Chrom bei 153.5 mm fehlte. Längeres Erhitzen (4-8 Stdn.) auf 700° oder 2stdg. Erhitzen auf 750° führte zum völligen Verschwinden aller CrO-Linien. Die Pulverdiagramme (Abbild. 1c) zeigten lediglich noch die Linien von Cr_2O_3 und Cr_3C_2 in ungefähr gleicher Intensität. Da die Linien von CrO fehlten, ließ sich auch hier die völlige Abwesenheit von α -Chrom einwandfrei erkennen.

Bei 800° änderte sich das Pulverdiagramm völlig (Abbild. 1 d). Während nach 1 stdg. Erhitzen auf 800° noch das gleiche Pulverdiagramm gefunden wurde wie bei 750°, waren nach 2 Stdn. und mehr alle Linien von Cr_3C_2 völlig verschwunden, während jene von Cr_2O_3 in ihrer Intensität nur wenig verringert waren. An Stelle von Cr_3C_2 waren die Linien einer neuen Substanz vorhanden, die als ein *orthorhombisches Chromcarbid* von nicht näher bekannter Zusammensetzung identifiziert werden konnte,

Chemische Berichte Jahrg. 94

dessen Pulverdiagramm 1949 von W. CRAFTS und J. L. LAMONT³⁾ angegeben worden ist. Die genannten Autoren vermuteten, daß es sich um eine zweite Modifikation des von A. WESTGREN⁴⁾ genau untersuchten trigonalen Cr_7C_3 handeln könne; wir behalten die Bezeichnung Cr_7C_3 (?) für das orthorhombische Chromcarbid bis auf weiteres bei. Schließlich trat im Diagramm Abbild. 1d noch eine weitere kräftige Einzellinie bei 130.5 mm auf. Wie die weiter unten mitgeteilten Ergebnise zeigen, stellt sie die stärkste Linie eines weiteren Carbids Cr_2C dar.

Zweistündiges Erhitzen auf 1000° (Abbild. 1e) verringerte die Intensität der Linien von Cr_2O_3 und von $Cr_7C_3(?)$ auf etwa die Hälfte. α -Chrom war auch hier nicht nachweisbar; neu aufgetreten waren aber etwa 1 Dutzend Linien einer weiteren Substanz, die sich als $Cr_{23}C_6$ identifizieren ließ. Die einzelne Linie von Cr_2C war wieder verschwunden.

Abbild. 1f zeigt schließlich das Pulverdiagramm nach dem Erhitzen der Substanz i. Hochvak. auf 1200° im Sinterkorundrohr. Cr₂O₃, Cr₂C und Cr₂₃C₆ waren verschwunden. Überraschenderweise bestand die Substanz nunmehr aus fast reinem Cr₃C₂; sämtliche starken Linien (etwa 32) stimmten genau mit jenen überein, die bei 700° und 750° aufgetreten und wieder verschwunden waren. Zwei weitere, sehr schwache Linien gehören anscheinend dem α -Chrom an.

In Gegenwart von überschüssigem Kohlenstoff (Gemisch des Ausgangspräparats mit dem gleichen Gewicht Methanruß) trat nach 2stdg. Erhitzen auf 800° i. Hochvak. das gleiche Pulverdiagramm auf wie nach 1stdg. Erhitzen des unveränderten Präparats auf 800° oder 750° (Abbild. 1c). Das Reaktionsprodukt bestand aus etwa gleichen Mengen Cr_2O_3 und Cr_3C_2 ; das Carbid Cr_7C_3 (?) hatte sich in diesem Fall nicht gebildet.

Bei einigen Versuchen (ohne Kohlezusatz) wurde das entwickelte CO bei der Versuchstemperatur jeweils so lange abgepumpt und gesammelt, bis dessen Menge vernachlässigt werden konnte; Tab. 1 enthält die auf 100 mg Ausgangspräparat umgerechneten Mittelwerte. Aus der Menge des gefundenen Kohlenoxids und der Tatsache, daß das Präparat nach dem Erhitzen i. Hochvak. auf 1200° aus praktisch reinem Cr_3C_2 bestand, läßt sich berechnen, daß das Ausgangspräparat wenigstens 22.2% Kohlenstoff enthielt.

Tab. 1. Entwicklun	g von CO aus	s dem Ausga	ngspräparat	im Ho	chvakuum
Temp.°	C 700	800	900	1000	1200
CO insges. (mMo	l) 0.03	0.08	0.20	0.38	1.06

VERHALTEN DES AUSGANGSPRÄPARATS BEIM ERHITZEN IM WASSERSTOFFSTROM

Abbild. 2 zeigt eine Reihe typischer Pulverdiagramme, die nach dem Erhitzen des Ausgangspräparats im Wasserstoffstrom aufgenommen wurden.

Die Reaktion des Wasserstoffs setzte bereits bei 550° merklich ein. Nach 2stdg. Erhitzen auf 570° lag noch praktisch unverändert CrO vor. Vier sehr schwache Linien zeigten jedoch (Abbild. 2a), daß Spuren einer unbekannten, bisher *noch nicht identifizierten Phase* aufgetreten waren, die mit X bezeichnet werden soll. Zweistündiges Erhitzen auf 600° genügte aber, um neben den Linien von CrO auch jene von Cr₂O₃ und Cr₃C₂ hervortreten zu lassen.

³⁾ Metals Transactions 185, 957 [1949]. ⁴⁾ Järnkont. Ann. 90, 237 [1935].

In 6 Stdn. zersetzte sich CrO bei 600° im Wasserstoffstrom bereits vollständig, obwohl es bei der gleichen Temperatur i. Hochvak. in 9 Stdn. fast unverändert geblieben war. Wie Abbild. 2b zeigt, war CrO völlig verschwunden; dafür erschienen die Linien von Cr_2O_3 . Der größte Teil des Reaktionsproduktes bestand indessen aus anderen Verbindungen, wie 17 neue, z. T. sehr starke Linien zeigten. Durch einge-

Abbild. 2. Pulverdiagramme nach dem Erhitzen im Wasserstoffstrom (* im Al₂O₃-Rohr)

henden Vergleich verschiedener Pulverdiagramme ergab sich, daß diese Linien zwei verschiedenen Substanzen zugehörten und zwar den gleichen, die bereits beim Erhitzen i. Hochvak. aufgetreten waren. Hier erschienen jedoch nicht nur die Linien des orthorhombischen Chromcarbids $Cr_7C_3(?)$, sondern auch jene des hexagonalen Carbids Cr_2C mit hoher Intensität.

Nach 6stdg. Erhitzen im Wasserstoffstrom auf 700° (Abbild. 2c) trat neben Cr_2O_3 und $Cr_7C_3(?)$ merkwürdigerweise das Carbid $Cr_{23}C_6$ mit hoher Intensität auf; dafür fehlte aber Cr_2C völlig. Bei 900° (Abbild. 2d) waren schließlich nach 6 Stdn. neben Cr_2O_3 alle drei Carbide $Cr_7C_3(?)$, Cr_2C und $Cr_{23}C_6$ zugegen, wobei Cr_2C wiederum den Hauptanteil stellte. Bis zu dieser Temperatur blieben die Linien von Cr_2O_3 in nur wenig verminderter Intensität bestehen.

Nach 6stdg. Erhitzen auf 1000° im Wasserstoffstrom waren die Linien von Cr_2O_3 nahezu, jene von $Cr_7C_3(?)$ und Cr_2C vollständig verschwunden und es lag fast reines $Cr_{23}C_6$ vor, wie Abbild. 2e zeigt; auch α -Chrom war eindeutig noch nicht vorhanden. Bei längerem Erhitzen auf 1000° (12–18 Stdn.) trat jedoch wieder Cr_2C in kleiner Menge neben $Cr_{23}C_6$ auf.

Sechsstündiges Erhitzen auf 1200° im Wasserstoffstrom, das, wie bei allen bisher angeführten Versuchen, zunächst im Quarzrohr unter Benutzung eines Sinterkorundschiffchens vorgenommen worden war, führte erstmalig zum Auftreten von α -Chrom neben Cr₂₃C₆ (Abbild. 2f). Bei Steigerung der Temperatur bis 1350°, aber auch schon bei längerem Erhitzen auf 1100° verschwanden zunächst die Linien von Cr₂₃C₆, dann allmählich auch die Linien von α -Chrom; dafür trat eine durch 7 starke Linien charakterisierte neue Substanz auf (Abbild. 2i), die sich jedoch als Cr₃Si entpuppte⁵⁾. Der Wasserstoff bildete somit an der Wandung des Quarzrohres flüchtiges Silicium oder dessen Verbindungen bereits in solchem Ausmaß, daß Cr₂₃C₆ quantitativ in Cr₃Si überging.

Die Wiederholung der Versuche im Sinterkorundrohr führte abermals zu einer Überraschung. Nach 6stdg. Erhitzen im Wasserstoffstrom auf 1000° trat die erwartete Verbindung $Cr_{23}C_6$ *überhaupt nicht* auf (Abbild. 2g); statt dessen zeigten sich im Pulverdiagramm 19 neue Linien. 9 von ihnen waren mit denen von Cr_2C fast identisch, während die restlichen Cr_2O_3 zugehörten. Bei 6stdg. Erhitzen auf 1200° im Sinterkorundrohr entstand jedoch allein α -Chrom, wie aus Abbild. 2h hervorgeht.

	30	40	50	60	70	80	90	100	110	120	130	140	150	160 mm
a	800° *		X XX	××	× × × × ×	**	× ×	××	× _ ×	××	* * *			*Cr3C2
Ъ	800° **		<u>* *</u>	Ĩĭ		, Ĭl			>* °	×	× ×	××	Î	

Abbild. 3. Pulverdiagramme nach dem Erhitzen im Wasserstoffstrom (* bei Zusatz von 30% Methan, ** bei Zusatz von Kohlenstoff)

Die Beimischung von 30 % Methan zum Wasserstoffstrom führte bei 800° in 5 Stdn. zu reinem Cr_3C_2 (Abbild. 3a). Das Pulverdiagramm unterschied sich von dem in Abbild. 1f gezeigten lediglich durch die Abwesenheit von zwei sehr schwachen Linien des α -Chroms.

Ein entsprechender Versuch, bei dem das Ausgangspräparat mit der gleichen Menge von röntgenamorphem Kohlenstoff innig vermischt und im Wasserstoffstrom $51/_2$ Stunden auf 800° erhitzt wurde, führte zu einem ähnlichen, aber doch deutlich verschiedenen Ergebnis, wie Abbild. 3b zeigt. Cr₂O₃ war auch unter diesen Bedingungen bereits völlig verschwunden; dafür traten als Reaktionsprodukte Cr₇C₃(?) sowie Cr₃C₂ auf.

DER REAKTIONSVERLAUF

Aus den Pulverdiagrammen geht hervor, daß Menge und Art der unter gegebenen Bedingungen auftretenden Reaktionsprodukte innerhalb gewisser Grenzen zufälliger Art sind. Von den zahlreichen Einflüssen, von denen der Reaktionsablauf weitgehend bestimmt werden kann, sei nur die Beschaffenheit des Ausgangsmaterials, die Zusammensetzung der Gasphase, die Keimbildung und die Kristallisationsgeschwindigkeit genannt. Leider ist es ohne erheblichen Aufwand nicht möglich, den Anteil der verschiedenen Reaktionsprodukte aus den Pulverdiagrammen genauer zu bestimmen.

⁵⁾ Merkwürdigerweise zeigt die von N. SCHÖNBERG (Acta chem. scand. 8, 221 [1954]) angenommene Verbindung Cr₃O dieselbe Gitterkonstante wie Cr₃Si; wir fanden (nach Extrapolation auf $\vartheta = 90^{\circ}$) $a_0 = 4.561$ Å genau übereinstimmend mit dem Wert der Literatur. Die für Cr₃O angegebenen Intensitätsverhältnisse sind jedoch merklich verschieden von den bei Cr₃Si gefundenen.

Aber selbst eine ganz grobe Abschätzung der vorliegenden Mengen, wie sie den Abbildd. 4 und 5 zugrunde liegt, ist gleichwohl nicht ohne Interesse. Nach Möglichkeit wurden solche Pulveraufnahmen herangezogen, die unter gegebenen Bedingungen mehrfach reproduziert werden konnten. Beide Abbildungen gelten für eine Versuchsdauer von etwa 6 Stdn.; die Gesamtmenge des Chroms ist darin gleich 100 gesetzt; die Kurven der Oxide sind voll ausgezogen, die der Carbide gestrichelt oder punktiert.

Abbild. 4. Reaktionsprodukte im Hochvakuum

Wie Abbild. 4 zeigt, hält sich das mit CrO bezeichnete, kohlenstoffhaltige Ausgangspräparat i. Hochvak. bis höchstens 700° – bei ganz kurzem Erhitzen – unverändert. Infolge der Gegenwart von fein verteiltem Kohlenstoff treten bei seinem Zerfall Cr₂O₃ und Cr₃C₂ auf. Während nun mit steigender Temperatur die Menge von Cr₂O₃ langsam abnimmt, geht Cr₃C₂ bei etwa 800° rasch in das orthorhombische Cr₇C₃(?) über. Hierbei können auch kleine Mengen Cr₂C entstehen. Gegen 1000° geht Cr₇C₃(?) in Cr₂₃C₆ über; bei noch höherer Temperatur tritt schließlich im Überschuß vorhandener Kohlenstoff in Reaktion, und es bildet sich Cr₃C₂ als alleiniges Reaktionsprodukt auf Kosten von Cr₂₃C₆. Metallisches Chrom tritt beim Erhitzen i. Hochvak. erst bei 1200° in Spuren auf.

Abbild. 5. Reaktionsprodukte im Wasserstoffstrom

Abbild. 5 zeigt, daß beim Zerfall von CrO im Wasserstoffstrom schon bei 600° zunächst ebenfalls Cr_2O_3 und Cr_3C_2 auftreten; aber schon wenig oberhalb von 600° geht Cr_3C_2 bald in Cr_2C und $Cr_7C_3(?)$ über. Während nun $Cr_7C_3(?)$ oberhalb von 900° verschwindet, ist Cr_2C noch weit über 1000° im Wasserstoffstrom beständig. Im Temperaturbereich um 700° erscheint jedoch statt seiner die Verbindung $Cr_{23}C_6$, deren Menge bei etwa 800° zugunsten von Cr_2C wieder abnimmt. Erst oberhalb von 900° wird aus Cr_2O_3 und aus Cr_2C in größerer Menge $Cr_{23}C_6$ gebildet; dieses wird schließlich oberhalb von 1000° langsam zu α -Chrom reduziert. Im Sinter-

korundrohr, d. h. wahrscheinlich bei sehr geringem Wasserdampfdruck, wird die Bildung von $Cr_{23}C_6$ bei 1000° völlig unterdrückt; statt dessen dehnt sich der Existenzbereich der Verbindung Cr_2C nach höheren Temperaturen hin aus. Dieses Carbid geht dann im Wasserstoffstrom zwischen 1100 und 1200° glatt und vollständig in α -Chrom über.

Merkwürdig ist, daß in mehreren Fällen dasselbe Reaktionsprodukt in zwei verschiedenen Temperaturbereichen auftritt; dies ist in Abbild. 4 bei Cr_3C_2 deutlich zu beobachten, ebenso in Abbild. 5 bei Cr_2C und $Cr_{23}C_6$. Es erscheint bemerkenswert, daß das gewöhnliche trigonale Cr_7C_3 in keinem Fall beobachtet wurde⁶; statt dessen traten das noch nicht genauer bekannte orthorhombische Carbid $Cr_7C_3(?)$ und das bisher unbekannte⁷ hexagonale Cr_2C auf.

Die DEUTSCHE FORSCHUNGSGEMEINSCHAFT und der VERBAND DER CHEMISCHEN INDUSTRIE unterstützten die Durchführung der Arbeit durch Sachspenden, für die wir aufs beste danken.

BESCHREIBUNG DER VERSUCHE

Röntgenographische Charakterisierung der einzelnen Verbindungen

Ein bei 250° gewonnenes Ausgangspräparat zeigte als Gitterkonstante $a_0 = 4.144$ Å; nach 9stdg. Erhitzen i. Hochvak. auf 600° betrug diese 4.116 Å. Gelegentlich traten jedoch außer den 5 intensiven Linien von CrO Andeutungen anderer, sehr schwacher Linien auf. Als in einem Falle größere Mengen Cr(CO)₆ bei 500° zersetzt worden waren, erschien das Produkt uneinheitlich; ein heller, metallisch aussehender Anteil war reines CrO und lieferte $a_0 = 4.139$ Å. Ein tiefschwarzer Anteil ergab $a_0 = 4.128$ Å und zeigte deutlich einige weitere Linien, die einer noch nicht identifizierten Phase X entsprechen (vgl. Abbild. 2a).

Von den in den Pulverdiagrammen auftretenden Linien ließen sich zunächst jene von CrO, Cr₂O₃ und α -Chrom an Hand von Vergleichsaufnahmen ohne Schwierigkeit identifizieren. Auch die Verbindung Cr₃Si (Abbild. 2), die nur entweder rein oder zusammen mit α -Chrom auftrat, war mit Hilfe der ASTM-Karten und der Gitterkonstante ohne weiteres einwandfrei zu identifizieren⁵⁾. Trotz seines Linienreichtums war auch das Diagramm von Cr₃C₂ verhältnismäßig leicht zu erkennen, da diese Substanz unter verschiedenen Bedingungen teils rein, teils nur im Gemisch mit α -Chrom oder Chrom(1II)-oxid auftrat (vgl. Abbild. 3a, 1c, 1f). Das Pulverdiagramm des auf 1200° im Hochvakuum erhitzten Präparats war besonders scharf; die auf 360° korrigierten Werte der Vermessung dieses Films sind in Tab. 2 zusammen mit den daraus berechneten Werten von d und sin² ϑ angegeben. Die letzte Spalte enthält die sin² ϑ -Werte von Cr₃C₂ nach A. WESTGREN und G. PHRAGMÉN⁸; die Übereinstimmung ist – auch hinsichtlich der Intensitäten – durchweg sehr gut.

Die Identifizierung von $Cr_{23}C_6$ gelang erst, nachdem dieses Carbid bei verschiedenen Versuchen in nahezu reiner Form aufgetreten war. Tab. 3 gibt die Mittelwerte für die Pulverdiagramme mehrerer Präparate (Abbild. 2e, 2f). Die Übereinstimmung unserer sin² ϑ -Werte mit den von A. WESTGREN⁹ für das kubische $Cr_{23}C_6$ angegebenen ist— auch hinsichtlich der Intensitäten — so gut, daß an der Identität kein Zweifel bestehen kann.

⁶⁾ Auch für das von H. J. GOLDSCHMIDT, Nature [London] **162**, 855 [1948], angegebene kubische Carbid CrC ($a_0 = 3.6111$ Å) fanden sich keine Andeutungen.

⁷⁾ K. NISCHK, Z. Elektrochem. angew. physik. Chem. 29, 373 [1923].

⁸⁾ Svensk kem. Tidskr. 45, 141 [1933].

⁹⁾ Järnkont. Ann. 88, 501 [1933].

<i>I/I</i> 0	2 8 mm	d Å	sin² 8 gef.	sin ² 9 W. u. P. ⁸⁾	
 0.2	49.58	2.73	0.1758	0.1740	
0.2	53.79	2.53	2047	2016	
0.05	54.69	2.49	2111	2112	
1.0	59.80	2.30	2485	2473	
0.8	61.82	2.23	2639	2628	
0.2	65.62	2.11	2936	2937	
0.2	70.32	1.99	3316	3325	
0.3	72.32	1.94	3481	3475	
0.2	73.62	1.91	3590	3600	
0.2	74.73	1.89	3684	3682	
0.3	75.93	1.86	3785	3774	
0.3	78.33	1.81	3990	3977	
0.3	80.23	1.78	4152	4149	
0.1	81.84	1.75	4290	4273	
0.4	85.45	1.69	4604	4575	
0.1	89.76	1.62	4980	4969	
0.1	93.86	1.57	5336	5303	
0.1	97.47	1.52	5651	5606	
0.1	99.98	1.496	5866	5848	
0.5	108.70	1.410	6603	6559 a ₁	
0.2	113.81	1.367	7004	6961 a1	
0.2	119.71	1.325	7479	7443 a ₁	
0.05	124.02	1.298	7797	7759 a ₁	
0.05	127.03	1.280	8012	7989 a ₁	
0.2	130.53	1.261	8250	8227 α ₁	
0.5	133.73	1.246	8477	8437 a ₁	
0.2	136.44	1.235	8623	8607	
0.5	138.55	1.225	8749	8739 a ₁	
0.2	141.95	1.212	8938	8901 a ₁	
0.7	145.06	1.200	9099	9082 α ₁	
0.7	146.96	1.195	9191	9167a ₁	
0.7	152.3	1.180	9426	9397 α ₁	
0.3	153.2	1.177	9466	9477 ai	
0.4	160.7	1.161	9719	9728 α ₁	
0.1	162.5	1.159	9769	9761 a ₂	
0.5	166.6	1.153	9864		
0.3	168.7	1.151	9903		

Tab. 2. Pulverdiagramm von Cr_3C_2 (Cr-K_{σ}-Strahlung)

Schwieriger war die Identifizierung der beiden weiteren Substanzen, da diese nur miteinander oder im Gemisch mit mehreren anderen Stoffen auftraten. Erst nachdem es gelungen war, alle charakteristischen Linien der beiden Substanzen durch sorgfältigen Vergleich aller Pulverdiagramme herauszufinden, wurde es klar, daß weder die eine noch die andere Substanz mit dem ebenfalls von WESTGREN⁴) genau untersuchten und als Reaktionsprodukt hier erwarteten trigonalen Cr₇C₃ identisch sein konnte. Es fiel dagegen auf, daß das sin² ϑ -Diagramm der einen Substanz große Ähnlichkeit mit dem von HäGG für die hexagonale ζ -Phase von Mn₂N angegebenen hatte. In der Tat ließen sich *alle Linien bis auf eine extrem schwache, hexagonal indizieren*, wobei sich die Werte $a_0 = 2.79$ Å, $b_0 = 4.46$ Å, c/a = 1.599 als beste erwiesen. Unsere Werte für 2 ϑ , *d* und sin² ϑ zeigt Tab. 4. Die erste, extrem schwache Linie wurde bei der Indizierung zunächst unberücksichtigt gelassen; sie läßt sich jedoch mit 101 indizieren, wenn man an Stelle von a_0 den Wert $a_0/\overline{3}$ setzt. Das Auftreten dieser Überstrukturlinie wurde auch bei anderen, in Tab. 5 angeführten Stoffen beobachtet¹⁰).

¹⁰⁾ H. HAHN, Z. anorg. allg. Chem. **258**, 65 [1949]; R. JUZA und W. SACHSZE, ebenda, **251**, 207 [1943]; S. B. HENDRICKS und P. R. KOSTING, Z. Kristallogr., Mineralog. Petrogr., Abt. A 74, 514 [1930].

<i>I/I</i> 0	2 3 mm	d Å	sin² 9 gef.	sin²& nach W.9)
0.05	41.9	3.20	0.1278	0.127
0.05	43.7	3.08	1385	138
0.3	51.0	2.66	1853	185
0.5	57.7	2.37	2328	231
0.5	63.6	2.17	2777	277
1.0	68.0	2.05	3127	311
0.5	74.9	1.88	3697	369
0.5	79.0	1.80	4046	403
0.4	80.3	1.78	4158	415
0.05	89.6	1.63	496	496
0.3	90.8	1.61	5070	507
0.05	100.2	1.49	588	588
0.05	101.6	1.48	600	600
0.4	118.5	1.333	7386	738
0.6	124.7	1.293	7846	784
1.0	131.6	1.256	8320	830
0.9	137.1	1.231	8663	865
0.8	148.0	1.192	9240	922
0.9	156.6	1.170	9589	957

Tab. 3. Pulverdiagramm von $Cr_{23}C_6$ (Cr-K_{α}-Strahlung)

Tab. 4. Pulverdiagramm von Cr₂C (Cr-K_a-Strahlung)

I/I ₀	Index	2 0 mm	d Å	sin²२ gef.	sin² 3 ber.
0.05	(101)	44.53	3.20	0.1432	(0.1409)
0.2	100	57.02	2.40	2278	225
0.3	002	62.12	2.22	2662	264
1.0	101	65.66	2.11	2939	291
0.5	102	89.10	1.63	4922	489
0.6	110	110.6	1.394	6758	675
0.8	103	129.6	1.266	8186	819
1.0	112	151.0	1.183	9372α ₁	9376aı
1.0	201	158.2	1.166	9641 α ₁	9646 a1

Tab. 5. Hexagonale Carbide und Nitride gleicher Struktur

	-		ala
	<i>a</i> ₀	<i>c</i> ₀	c/a
β-V ₂ C	2.9	4.5	1.551
β-V ₃ N	2.84	4.54	1.599
Cr ₂ C	2.79	4.46	1.599
β -Cr ₂ N	2.75	4.44	1.615
ζ-Mn ₂ N	2.8	4.5	1.607
e-Fe ₃ C	2.73	4.33	1.586
ε-Fe ₃ N	2.77	4.41	1.592
Y-Co3N	2.66	4.35	1.635
Ni ₃ C	2.65	4.33	1.634
Ni ₃ N	2.66	4.30	1.617
Nb ₂ N	3.06	4.96	1.621
β-Mo ₂ C	3.00	4.72	1.573
Ta ₂ C	3.09	4.93	1.596
W ₂ C	2.99	4.71	1.575

In Tab. 5 sind die Gitterkonstanten des bisher unbekannten Chromcarbids denen einiger anderer Carbide und Nitride gegenübergestellt. Ihre Zusammensetzung liegt innerhalb der Grenzen M_2X und M_3X ; das Chromcarbid dieser Struktur soll daher mit der Formel Cr_2C gekennzeichnet werden.

Schließlich glückte auch die Identifizierung der zweiten unbekannten Substanz. Sie erwies sich als *identisch mit einem orthorhombischen Chromcarbid*, dessen Pulverdiagramm 1949 von W. CRAFTS und J. L. LAMONT³) angegeben worden war. Die genannten Autoren vermuteten, daß es sich bei diesem Chromcarbid, über dessen Zusammensetzung nichts Näheres bekannt ist, um eine andere Modifikation von Cr_7C_3 handeln könne. Wir behalten die Bezeichnung $Cr_7C_3(?)$ bis auf weiteres bei, obwohl man aus der Tatsache, daß das Carbid

I/I ₀	2 ያ mm	d(Å) gef.	d(Å) C. u. L. ³⁾
0.2	60.17	2.29	2.27
0.3	65.56	2.11	2.10
1.0	68.26	2.04	2.02
0.05	69.05	2.02	1.99
0.05	76.85	1.84	1.82
0.2	81.73	1.75	1.73
0.1	91.13	1.61	1.59
0.1	105.4	1.440	1.42
0.3	115.8	1.352	1.34
0.7	142.4	1.211	1.195
0.8	149.3	1.188	
1.0	156.5	1.170	1.172

Tab. 6. Pulverdiagramm von Cr₇C₃(?) (Cr-K_a-Strahlung)

zusammen mit Cr_3C_2 beim Erhitzen mit überschüssigem Kohlenstoff entsteht (Abbild. 3b), eher schließen sollte, daß es *mehr* Kohlenstoff enthält als Cr_2C . Unsere Werte für 2 ϑ und *d* sind zum Vergleich mit den Werten der Literatur in Tab. 6 angeführt.